当前位置:快学网学习网高中学习高中数学数学典例讲解树形结合来解决与斜率有关的问题» 正文

树形结合来解决与斜率有关的问题

[02-10 16:43:50]   来源:http://www.kuaixue5.com  数学典例讲解   阅读:8724
概要: 概要:与斜率有关的问题【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围. 解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-. ∵ l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大. 【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围.
树形结合来解决与斜率有关的问题,标签:高一数学讲解,高中数学讲解,http://www.kuaixue5.com
与斜率有关的问题
【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.
 
  解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-.
  ∵ l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.
 
  【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围.


Tag:数学典例讲解高一数学讲解,高中数学讲解高中学习 - 高中数学 - 数学典例讲解
上一篇:复数的四则运算实例

发表评论

表达一些您的想法吧!

文明评论,理性发言!