当前位置:快学网学习网高中学习高考学习高考数学复习资料高考数学公式数列公式之数列前N项和公式的求法» 正文

数列公式之数列前N项和公式的求法

[01-15 13:09:39]   来源:http://www.kuaixue5.com  高考数学公式   阅读:8373
概要: 概要:数列前N项和公式的求法(一)1.等差数列:通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数an=ak+(n-k)d ak为第k项数若a,A,b构成等差数列 则 A=(a+b)/22.等差数列前n项和:设等差数列的前n项和为Sn即 Sn=a1+a2+...+an;那么 Sn=na1+n(n-1)d/2=dn^2(即n的2次方) /2+(a1-d/2)n还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法(二)1.等比数列:通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项an=a1*q^(n-1),am=a1*q^(m-1)则an/am=q^(n-m)(1)an=am*q^(n-m)(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)(3)若m+n=p+q 则 am×an=ap×aq2.等比数列前n项和设 a1,a2,a3...an构成等比数列前n项和Sn=a1+a2+a3...anSn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n
数列公式之数列前N项和公式的求法,标签:高考数学公式大全,http://www.kuaixue5.com

  数列前N项和公式的求法

  (一)1.等差数列:

  通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数

  an=ak+(n-k)d ak为第k项数

  若a,A,b构成等差数列 则 A=(a+b)/2

  2.等差数列前n项和:

  设等差数列的前n项和为Sn

  即 Sn=a1+a2+...+an;

  那么 Sn=na1+n(n-1)d/2

  =dn^2(即n的2次方) /2+(a1-d/2)n

  还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法

  (二)1.等比数列:

  通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项

  an=a1*q^(n-1),am=a1*q^(m-1)

  则an/am=q^(n-m)

  (1)an=am*q^(n-m)

  (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)

  (3)若m+n=p+q 则 am×an=ap×aq

  2.等比数列前n项和

  设 a1,a2,a3...an构成等比数列

  前n项和Sn=a1+a2+a3...an

  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

  注: q不等于1;

  Sn=na1 注:q=1

  求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法


Tag:高考数学公式高考数学公式大全高中学习 - 高考学习 - 高考数学复习资料 - 高考数学公式
上一篇:数列公式之等比数列公式

发表评论

表达一些您的想法吧!

文明评论,理性发言!